Please wait a minute...
腐蚀科学与防护技术  2019, Vol. 31 Issue (6): 615-621    DOI: 10.11903/1002.6495.2019.136
  研究报告 本期目录 | 过刊浏览 |
X100管线钢鹰潭土壤模拟溶液中腐蚀行为的研究
杨旭1,孙福洋1(),李丹平2
1. 西安特种设备检验检测院 西安 710065
2. 西安摩尔石油工程实验室有限公司 西安 710065
Corrosion Behavior of X100 Pipeline Steel in Simulated Solution of Yingtan Soil
YANG Xu1,SUN Fuyang1(),LI Danping2
1. Xi'an Special Equipment Inspection Institute, Xi'an 710065, China
2. Xi'an Maurer Petroleum Engineering Laboratory Co. , Ltd. , Xi'an 710065, China
全文: PDF(5007 KB)   HTML
摘要: 

采用失重法、线性极化曲线和阻抗谱电化学技术,结合SEM、EDS和XRD研究了SRB+IOB对X100管线钢在鹰潭土壤模拟溶液中腐蚀行为的影响。结果表明:X100管线钢在无菌环境下的腐蚀为中度腐蚀,腐蚀速率随浸泡时间的增加先减小,后缓慢增大,腐蚀产物主要为Fe2O3。有菌 (SRB+IOB) 环境下浸泡5 d后的腐蚀为严重腐蚀,浸泡17和40 d后的腐蚀为中度腐蚀,腐蚀速率随浸泡时间的增加不断减小,腐蚀产物主要为FeS和Fe2O3。X100管线钢在无菌环境下的腐蚀倾向为随浸泡时间的增加不断增大,在有菌 (SRB+IOB) 环境下为不断减小。腐蚀速率在无菌环境下为先迅速减小后缓慢增大,在有菌 (SRB+IOB) 环境下为不断迅速减小。SRB+IOB的存在加剧了X100管线钢的腐蚀。

关键词 X100管线钢鹰潭土壤模拟溶液腐蚀行为    
Abstract

The effect of sulfate reduction bacteria (SRB) and aerobic ferric oxidation bacteria (AFOB) on the corrosion behavior of X100 pipeline steel in a simulated solution of the soil at Yingtan district was investigated by means of mass-loss measurement, linear polarization curve measurement, electrochemical impedance spectroscopy, SEM, EDS and XRD. Results show that in the sterile simulated solution, X100 pipeline steel suffered from moderate corrosion. With the increasing time, the corrosion rate of the steel decrease first and then increase slowly. The corrosion product in the sterile simulated solution is Fe2O3. After soaking for 5 d in the simulated solution with both SRB+IOB the steel suffered from severe corrosion, while after soaking for 17 and 40 d the corrosion turned to be moderate corrosion and the corrosion rate decreases with time constantly. Correspondingly, the corrosion products are FeS and Fe2O3. In conclusion, with the increasing time, the corrosion tendency of X100 pipeline steel in the sterile simulated solution increases constantly, while in the simulated solution with SRB+IOB decreases constantly. Accordingly, the corrosion rate of X100 pipeline steel in the sterile simulated solution first decreases quickly and then increases slowly, while in the solution with SRB+IOB decreases quickly. The corrosion of X100 pipeline steel is aggravated by SRB+IOB.

Key wordsX100 pipeline steel    Yingtan soil    simulated solution    corrosion behavior
收稿日期: 2019-05-23     
ZTFLH:  TG172  
基金资助:原国家质量监督检验检疫总局科技计划项目(2017QK069)
通讯作者: 孙福洋     E-mail: 845972756@qq.com
Corresponding author: Fuyang SUN     E-mail: 845972756@qq.com
作者简介: 杨旭,女,1982年生,硕士

引用本文:

杨旭,孙福洋,李丹平. X100管线钢鹰潭土壤模拟溶液中腐蚀行为的研究[J]. 腐蚀科学与防护技术, 2019, 31(6): 615-621.
Xu YANG, Fuyang SUN, Danping LI. Corrosion Behavior of X100 Pipeline Steel in Simulated Solution of Yingtan Soil. Corrosion Science and Protetion Technology, 2019, 31(6): 615-621.

链接本文:

https://www.cspt.org.cn/CN/10.11903/1002.6495.2019.136      或      https://www.cspt.org.cn/CN/Y2019/V31/I6/615

图1  X100管线钢在鹰潭土壤模拟溶液中浸泡5、17和40 d后的平均腐蚀速率
图2  X100管线钢试样浸泡17 d后试样表面宏观腐蚀形貌
图3  试样表面SEM微观腐蚀形貌
Time / dPercentageSiSPCaFe
17Mass fraction / %---------0.6490.16
Atomic fraction / %---------0.7172.55
17 (SRB+IOB)Mass fraction / %0.710.610.100.5089.78
Atomic fraction / %1.300.850.290.6471.73
表1  X100管线钢在模拟溶液中浸泡17 d后的表面腐蚀产物EDS分析结果
图4  X100管线钢在模拟溶液中浸泡17 d后的表面腐蚀产物XRD分析结果
图5  X100管线钢在模拟溶液中浸泡不同时间后的极化曲线
Time / dSterileSRB+IOB
Icorr / μA·cm-2Ecorr / mVIcorr / μA·cm-2Ecorr / mV
56.756×10-7-7371.270×10-6-800
171.186×10-7-8076.832×10-7-750
401.313×10-7-8281.370×10-7-652
表2  X100管线钢在模拟溶液中浸泡不同时间后的极化曲线拟合结果
图6  X100管线钢在模拟溶液中浸泡不同时间后的Nyquist图
图7  X100管线钢在模拟溶液中浸泡不同时间后的等效电路
[1] Liu H W, Xu D K, Wu Y N, et al. Research progress in corrosion of steels induced by sulfate reducing bacteria [J]. Corros. Sci. Prot. Technol., 2015, 27: 409
[1] (刘宏伟, 徐大可, 吴亚楠等. 微生物生物膜下的钢铁材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2015, 27: 409)
[2] Xu C M, Zhang X, Luo L H, et al. Corrosion behavior of X100 pipeline steel in near neutral pH soil solution with action of SRB [J]. J. Iron Steel Res., 2017, 29: 562
[2] (胥聪敏, 张璇, 罗立辉等. X100管线钢在含SRB的近中性土壤溶液中的腐蚀行为 [J]. 钢铁研究学报, 2017, 29: 562)
[3] Zhang Y, Li Y. Microbiological corrosion and protection of oil and gas pipeline [J]. Equip. Environ. Eng., 2008, 5(5): 45
[3] (张燕, 李颖. 输油气管线的微生物腐蚀与防护 [J]. 装备环境工程, 2008, 5(5): 45)
[4] Yang J D, Xu F L, Hou J, et al. Research progress in microbial corrosion of metal materials and its prevention [J]. Equip. Environ. Eng., 2015, 12(1): 59
[4] (杨家东, 许凤玲, 侯健等. 金属材料的微生物腐蚀与防护研究进展 [J]. 装备环境工程, 2015, 12(1): 59)
[5] Sun F Y, Zhao G X, Yang D P, et al. Microbiological corrosion characteristics of 2507 duplex stainless steel in circulating cooling water [J]. Surf. Technol., 2015, 44(6): 70
[5] (孙福洋, 赵国仙, 杨东平等. 循环冷却水中2507双相不锈钢微生物腐蚀研究 [J]. 表面技术, 2015, 44(6): 70)
[6] Zhang Y, Lin J, Yu G W. 304 stainless steel microbiological influenced corrosion characteristic research [J]. Surf. Technol., 2009, 38(3): 44
[6] (张燕, 林晶, 于贵文. 304不锈钢的微生物腐蚀行为研究 [J]. 表面技术, 2009, 38(3): 44)
[7] Xu C M, Zhang Y H, Cheng G X, et al. Investigation of sulfate-reducing bacteria on pitting of 316L stainless steel in cooling water system for oil refinery [J]. J. Chin. Soc. Corros. Prot., 2007, 27: 48
[7] (胥聪敏, 张耀亨, 程光旭等. 炼油厂冷却水系统硫酸盐还原菌对316L不锈钢点腐蚀的研究 [J]. 中国腐蚀与防护学报, 2007, 27: 48)
[8] Lin J, Zhu G W, Sun C, et al. A review of microbiologically influenced corrosion of metals [J]. Corros. Sci. Prot. Technol., 2001, 13: 279
[8] (林建, 朱国文, 孙成等. 金属的微生物腐蚀 [J]. 腐蚀科学与防护技术, 2001, 13: 279)
[9] Li W T, Lin J. Surface analysis of Q235 steel corrosion behavior under biofilms [J]. Equip. Environ. Eng., 2007, 4(6): 19
[9] (李文涛, 林晶. 微生物膜下Q235钢腐蚀行为的表面分析 [J]. 装备环境工程, 2007, 4(6): 19)
[10] Xu C M, Yang D P, Zhang L Z, et al. Effect of SRB on corrosion behavior of X100 steel in simulated solution of Yingtan soil [J]. J. Mater. Eng., 2015, 43(6): 71
[10] (胥聪敏, 杨东平, 张灵芝等. SRB对X100钢在鹰潭土壤模拟溶液中腐蚀行为的影响 [J]. 材料工程, 2015, 43(6): 71)
[11] Sun F Y, Zhao G X, Yang D P. Microbiological corrosion characteristics of X100 pipeline steel in simulated Ku’erle soil solution [J]. Mater. Rep., 2014, 28(12): 47
[11] (孙福洋, 赵国仙, 杨东平. X100管线钢在库尔勒土壤模拟溶液中的微生物腐蚀特征 [J]. 材料导报, 2014, 28(12): 47)
[12] Starosvetsky J, Armon R, Groysman A, et al. Fouling of carbon steel heat exchanger caused by iron bacteria [J]. Mater. Perf., 1999, 38(1): 55
[13] Li C, Du C W, Liu Z Y, et al. Characteristics of electrochemical impedance spectroscopy for X100 pipeline steel in water-saturated acidic soil [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 377
[13] (李超, 杜翠薇, 刘智勇等. X100管线钢在水饱和酸性土壤中的电化学阻抗谱特征 [J]. 中国腐蚀与防护学报, 2011, 31: 377)
[14] Zhang L, Li X G, Du C W, et al. Effect of dissolved oxygen on the corrosion behaviors of X70 pipeline steels in Ku'erle soil simulated solution [J]. Heat Treat. Met., 2007, 32(12): 93
[14] (张亮, 李晓刚, 杜翠薇等. X70管线钢在库尔勒土壤模拟溶解氧液中的腐蚀行为 [J]. 金属热处理, 2007, 32(12): 93)
[15] Wu Y H, Luo S X, Gou H, et al. Effects of microbe on corrosion behavior of Q235 steel in yellow soils [J]. Surf. Technol., 2011, 40(2): 33
[15] (伍远辉, 罗宿星, 勾华等. 微生物对Q235钢在黄壤土中腐蚀行为的影响 [J]. 表面技术, 2011, 40(2): 33)
[1] 胡立坤,谢盼平,袁思成,许登峰,彭智,谢阿禧,郑峰. 阳极氧化钽酸锂薄膜在NaOH溶液中的腐蚀行为研究[J]. 腐蚀科学与防护技术, 2019, 31(4): 379-386.
[2] 杜明,朱世东,张骁勇,李金灵,宋少华. 含Cr低合金钢的CO2腐蚀产物膜形成及机理研究进展[J]. 腐蚀科学与防护技术, 2019, 31(3): 335-342.
[3] 马世朝,李玲毅,姚晓艳,原瑞迪,李红强,饶隆茂,程伟丽. Sn含量对轧制Mg-6Bi-Sn合金组织演变和腐蚀性能的影响[J]. 腐蚀科学与防护技术, 2019, 31(1): 19-26.
[4] 朱敏, 聂轮, 袁永锋, 郭绍义, 尹思敏, 俞高红. 高强度弹簧钢60Si2CrVA与SAE9254在NaCl溶液中的腐蚀行为[J]. 腐蚀科学与防护技术, 2018, 30(5): 481-488.
[5] 赵国仙, 王园园, 路永新. 模拟高矿化度水条件下核桃壳过滤器内构件Q345R钢的腐蚀行为研究[J]. 腐蚀科学与防护技术, 2018, 30(5): 467-474.
[6] 梁志远, 于淼, 桂雍, 赵钦新. 高温CO2环境中耐热合金腐蚀行为研究[J]. 腐蚀科学与防护技术, 2018, 30(3): 237-243.
[7] 张昌松,刘强,陈威. Si3N4-hBN复相陶瓷在氢氟酸和冰晶石熔盐中的腐蚀行为研究[J]. 腐蚀科学与防护技术, 2017, 29(3): 220-226.
[8] 沈雪青,张玉勤,蒋业华,周荣. SPS烧结Ti-35Nb-7Zr-5Ta合金在Hank's模拟人工体液中的电化学腐蚀行为[J]. 腐蚀科学与防护技术, 2016, 28(6): 543-548.
[9] 郑平,何川,陈旭. 阴极极化下X80钢在鹰潭土壤模拟溶液中应力腐蚀行为研究[J]. 腐蚀科学与防护技术, 2015, 27(6): 585-589.
[10] 孙彦伟,陈吉,许志显,陈晓明. 表面离子渗氮对X80钢在鹰潭土壤模拟溶液中腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2015, 27(3): 237-242.
[11] 汪峰,Thomas M. Devine. 核电站蒸汽发生器传热管用Inconel合金在高温高压水中的腐蚀行为研究[J]. 腐蚀科学与防护技术, 2015, 27(1): 19-24.
[12] 曹晓恩,杨吉春,杨昌桥,周莉,肖茂元. 稀土Ce对X80钢土壤模拟溶液腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2014, 26(3): 211-217.
[13] 许述剑,刘小辉,张皓智,李英. 高含硫天然气净化过程中的典型腐蚀行为研究[J]. 腐蚀科学与防护技术, 2014, 26(3): 273-277.
[14] 范强强,华丽. 2205双相不锈钢腐蚀行为的影响因素[J]. 腐蚀科学与防护技术, 2014, 26(1): 178-182.
[15] 杨吉春, 曹晓恩, 肖茂元, 姜文. 稀土Ce对X80管线钢电化学腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2013, 25(4): 271-275.