Please wait a minute...
Corrosion Science and Protetion Technology  2019, Vol. 31 Issue (6): 597-602    DOI: 10.11903/1002.6495.2019.037
Current Issue | Archive | Adv Search |
Preparation and Corrosion Resistance of Glass Flake/Epoxy Composite Coatings in Marine Atmosphere
YAN Chenxi1,2(),WANG Shengrong1,ZHANG Tianyi2,YANG Jianwei1,CAO Jianping1
1. Shougang Research Institute of Technology, Beijing 100043, China
2. Key Laboratory for Corrosion and Protection, Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(2541KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Glass flakes were modified with silane coupling agent, and characterized by Fourier transform infrared spectroscopy (FTIR). Then the modified glass flakes were blend with epoxy resin to prepared composite glass/epoxy paint. Further, the corrosion performance of the composite glass/epoxy coated carbon steel was assessed by means of neutral salt spray test and electrochemical impedance spectroscopy (EIS). The results show that this method can successfully modify the surface of glass flakes by increasing hydroxyl pairing, and the glass flakes have a good shielding effect on corrosive media in solution, which significantly improves the corrosion resistance of epoxy coatings. 30%(mass fraction) glass flake modified epoxy coating immersed in 3.5%NaCl solution for 648 h, the impedance modulus Z was above 107.6 Ω?cm2, which was much higher than that of ordinary epoxy coating. The diffusion coefficient D of water molecule in 30% glass flake modified coatings is 2.07×10-11 cm2/s, which is much smaller than that of ordinary epoxy coating 1.9×10-9 cm2/s.

Key words:  glass flake      epoxy resin      composite coating      FTIR      EIS      salt spray test     
Received:  11 February 2019     
TG172  
Fund: National Key R&D Program of China(2016YFC0401205)
Corresponding Authors:  Chenxi YAN     E-mail:  yanchenxi19930207@163.com

Cite this article: 

YAN Chenxi,WANG Shengrong,ZHANG Tianyi,YANG Jianwei,CAO Jianping. Preparation and Corrosion Resistance of Glass Flake/Epoxy Composite Coatings in Marine Atmosphere. Corrosion Science and Protetion Technology, 2019, 31(6): 597-602.

URL: 

https://www.cspt.org.cn/EN/10.11903/1002.6495.2019.037     OR     https://www.cspt.org.cn/EN/Y2019/V31/I6/597

Fig.1  Reaction mechanism diagram of glass flake surface grafted KH570
Fig.2  FTIR spectra of glass flake and glass flake-KH570
Fig.3  Equivalent circuits used to fit the EIS data of coating: (a) only one time constant, (b) two time constants
Fig.4  Nyquist plot (a) and Bode plot (b) of epoxy coating under different immersion time in 3.5%NaCl solution
Fig.5  Nyquist plot (a) and Bode plot (b) of epoxy coating with glass flake under different immersion time in 3.5%NaCl solution
Fig.6  lgQc-t1/2 curves of epoxy coating and epoxy coating with glass flake systems immersed in 3.5%NaCl solution at the initial stage
Fig.7  Surface morphologies of epoxy coating (a) and 30% glass flake epoxy coating (b) after 1000 h in salt spray tests
[1] Christopher G, Kulandainathan M A, Harichandran G. Comparative study of effect of corrosion on mild steel with waterborne polyurethane dispersion containing graphene oxide versus carbon black nanocomposites [J]. Prog. Org. Coat., 2015, 89: 199
[2] Hao S S, Sun X F, Song W, et al. Preparation and properties of graphene modified epoxy resin coating [J]. China Surf. Eng., 2018, 31(3): 108
[2] (郝松松, 孙晓峰, 宋巍等. 石墨烯改性环氧树脂涂层的制备及其性能 [J]. 中国表面工程, 2018, 31(3): 108)
[3] Peng J H. The application of epoxy glass flake coating to the fields of heavy duty anticorrosion [J]. Total Corros. Control, 2009, 23(3): 32
[3] (彭金花. 环氧玻璃鳞片涂料在重防腐领域中的应用 [J]. 全面腐蚀控制, 2009, 23(3): 32)
[4] Liu H M, Fei Y W, Ma J, et al. Mechanism and application of scale anti-corrosion coatings [J]. Chem. Ind. Times, 2016, 30(7): 35
[4] (刘鸿铭, 费逸伟, 马军等. 鳞片防腐涂料机理与其应用研究 [J]. 化工时刊, 2016, 30(7): 35)
[5] Li M, Wang X J, Liu B C, et al. Development of epoxy glass flake heavy-duty anticorrosive coatings used in marine environment [J]. Paint Coat. Ind., 2010, 40(1): 40
[5] (李敏, 王秀娟, 刘宝成等. 海洋环境防腐蚀玻璃鳞片涂料的研制 [J]. 涂料工业, 2010, 40(1): 40)
[6] Sathiyanarayanan S, Azim S S, Venkatachari G. Corrosion protection coating containing polyaniline glass flake composite for steel [J]. Electrochim. Acta, 2008, 53: 2087
[7] Zhang X, Xu J H, Li H L, et al. Study of corrosion protection anticorrosion coating with modified glass flake and polyphenylene sulfide [J]. Paint Coat. Ind., 2013, 43(7): 33
[7] (张昕, 许季海, 李红良等. 聚苯硫醚掺杂改性玻璃鳞片防腐涂层耐腐蚀性研究 [J]. 涂料工业, 2013, 43(7): 33)
[8] Zhang W G, Li S Y. Corrosion behavior of glass scale coatings in flue gas desulfurization units [J]. Corros. Prot., 2010, 31: 161
[8] (张贻刚, 李淑英. 烟气脱硫装置中玻璃鳞片涂层的腐蚀行为 [J]. 腐蚀与防护, 2010, 31: 161)
[9] Van Rooyen L J, Karger-Kocsis J, Vorster O C, et al. Helium gas permeability reduction of epoxy composite coatings by incorporation of glass flakes [J]. J. Membr. Sci., 2013, 430: 203
[10] Kohl J G, Malicky D M, Jones A M. Adhesion of epoxy (pseudobarnacles) to glass that has been treated with hydrophobic carbosilane-based coatings [J]. Prog. Org. Coat., 2017, 107: 1
[11] Zheng G, Du N, Liang H B. The Surface modification of nano-TiO2 and Its distribution in polyurethane coatings [J]. Surf. Technol., 2007, 36(4): 42
[11] (郑高, 杜楠, 梁红波. 纳米二氧化钛表面改性及其在聚氨酯涂层中的分散性质 [J]. 表面技术, 2007, 36(4): 42)
[12] Fang Y N, Liu S, Zhao W J, et al. Preparation and corrosion resistance of graphene/fluorocarbon coatings [J]. Surf. Technol., 2016, 45(11): 67
[12] (房亚楠, 刘栓, 赵文杰等. 石墨烯/氟碳涂层的制备及其耐蚀性能 [J]. 表面技术, 2016, 45(11): 67)
[13] Yu Z X, Di H H, Ma Y, et al. Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings [J]. Surf. Coat. Technol., 2015, 276: 471
[14] Sui L L, Liu F, Chen X R, et al. Preparation and corrosion resistance of nano SiO2-graphene oxide/epoxy composite coatings [J]. Acta Mater. Compos. Sin., 2018, 35: 1716
[14] (随林林, 刘芳, 陈晓蕊等. 纳米SiO2-氧化石墨烯/环氧涂层的制备及其防腐蚀性能 [J]. 复合材料学报, 2018, 35: 1716)
[15] Zhang J Q, Cao C N. Study and evaluation on organic coatings by electrochemical impedance spectroscopy [J]. Corros. Prot., 1998, 19: 99
[15] (张鉴清, 曹楚南. 电化学阻抗谱方法研究评价有机涂层 [J]. 腐蚀与防护, 1998, 19: 99)
[16] Wang S Q, Liu F C, Chen J J, et al. Influence of flaky nickel powder on permeation resistance of fluorocarbon coatings [J]. Chin. J. Mater. Res., 2015, 29: 255
[16] (王思齐, 刘福春, 陈军君等. 片状镍粉对氟碳涂层抗渗透性的影响 [J]. 材料研究学报, 2015, 29: 255)
[17] Liu X W, Xiong J P, Cao J Y, et al. Electrochemical corrosion behavior of three coating systems by EIS [J]. J. Chem. Ind. Eng., 2008, 59: 659
[17] (刘旭文, 熊金平, 曹京宜等. EIS法研究3种配套涂层体系的腐蚀电化学行为 [J]. 化工学报, 2008, 59: 659)
[18] Cao J Y, Xiong J P, Zuo Y, et al. Evaluation of protective performance of organic coatings by EIS parameters at high frequency zone [J]. J. Chem. Ind. Eng., 2008, 59: 2851
[18] (曹京宜, 熊金平, 左禹等. 利用EIS高频区参数评价两种环氧涂层的性能 [J]. 化工学报, 2008, 59: 2851)
[19] Zhu C F, Xie R, Xue J H. Study of degradation process and water diffusion coefficient of heavy-duty coatings in seawater [J]. J. Mater. Eng., 2011, (12): 53
[19] (朱承飞, 解瑞, 薛金花. 海水中重防腐涂层的失效行为及扩散系数的测定 [J]. 材料工程, 2011, (12): 53)
[20] Philippe L V S, Lyon S B, Sammon C, et al. Validation of electrochemical impedance measurements for water sorption into epoxy coatings using gravimetry and infra-red spectroscopy [J]. Corros. Sci., 2008, 50: 887
[21] Zhang J T, Hu J M, Zhang J Q, et al. Studies of water transport behavior and impedance models of epoxy-coated metals in NaCl solution by EIS [J]. Prog. Org. Coat., 2004, 51: 145
[1] PANG Zhen,SUN Wei,TANG Xiaobo,TANG Yuming,ZHAO Xuhui,ZUO Yu,LIU Bin,YANG Lei,YANG Rui. Degradation and Service Life Prediction of Organic Coatings/Carbon Steel in Simulated Atmospheric Environments[J]. 腐蚀科学与防护技术, 2019, 31(6): 637-642.
[2] Yi WAN,Dangsheng XIONG,Jianliang LI,Wei XU. Tribological Properties of Ni-based Composite Coating with Graphene Prepared by Oxidation- and Reduction-method[J]. 腐蚀科学与防护技术, 2019, 31(3): 297-302.
[3] Aiqin ZHENG,Xinli SONG,Yu CAO,Yuxi MA,Xinjun SUN,Xiaokai LIANG. Corrosion Behavior of Cu Bearing Low Alloy Wear-resistant Steel in Salt Spray Environment[J]. 腐蚀科学与防护技术, 2019, 31(3): 279-284.
[4] Guoxian ZHAO,Hengqian ZHU. Corrosion Behavior of Nickel-based Alloy 718 in Simulated H2S/CO2 Environments[J]. 腐蚀科学与防护技术, 2019, 31(3): 291-296.
[5] Xu WANG,Guofei HUANG. Comparison of Anticorrosion Measures for Overhead Conductors[J]. 腐蚀科学与防护技术, 2019, 31(2): 169-173.
[6] Baohua ZHAO,Hongxin XU,Wenhua ZHANG,Bi SHI. Corrosion Inhibition Performance of Valonia Tannin for Q235 Carbon Steel in 0.5 mol/L HCl[J]. 腐蚀科学与防护技术, 2019, 31(2): 205-211.
[7] Xiaoming JIA,Wei RONG,Heng ZHAO,Xiaohong LIANG. Corrosion Resistance of Composite Coatings of Polydopamine/hydroxyapatite on AZ31 Mg-alloy[J]. 腐蚀科学与防护技术, 2019, 31(1): 39-44.
[8] Yufeng LI, Jiyu LI, Shi QI, Zheng YAO, Jingjing ZHU. Anticorrosion Properties of Citric Acid Doped Composite Coatings of Polyaniline/silicon Sol[J]. 腐蚀科学与防护技术, 2018, 30(4): 426-430.
[9] Wanglin GUI, Ji CHEN, Xiao CUI. Effect of WC/Co Content on Corrosion Behavior of Nanocomposite Coatings of Ni-WC/Co[J]. 腐蚀科学与防护技术, 2018, 30(3): 297-301.
[10] Qingfei MA, Hui HE, Lin JIANG, Qingchang WEN, Xiaolin WEI, Xingyue YONG. Performance of a New Type Polyester Modified Acrylic Polyurethane Coating[J]. 腐蚀科学与防护技术, 2017, 29(6): 591-596.
[11] Deyuan LIN. Corrosion Behavior of Al-alloy 6082-T6 in Simulated Marine Atmospheric Environment[J]. 腐蚀科学与防护技术, 2017, 29(5): 499-506.
[12] Xueying LI, Chunhua FAN, Qianlin WU, Ning ZHONG, Lihua DONG, Yansheng YIN. Effect of pH Value of Na2SO4 Solutions on Electrochemical Corrosion Behavior of PH13-8Mo Precipitation Hardening Stainless Steel[J]. 腐蚀科学与防护技术, 2017, 29(4): 349-355.
[13] Jianxiong LIANG, Changjun WANG, Hanrong GAO, Zhenbao LIU, Yongqing SUN, Zhiyong YANG. Influence of Aging Treatment on Electrochemical Behavior and Property of Passive Film of 13Cr15Ni4Mo3N Stainless Steel[J]. 腐蚀科学与防护技术, 2017, 29(4): 401-406.
[14] Jianxiong LIANG, Changjun WANG, Hanrong GAO, Zhenbao LIU, Yongqing SUN, Zhiyong YANG. Effect of Aging Treatment on Pitting Corrosion Resistance of PH13-8Mo Stainless Steel[J]. 腐蚀科学与防护技术, 2017, 29(4): 407-412.
[15] Honggang TANG,Xiaobao ZUO,Yujuan TANG,Linfeng QIU,Yuxiang FENG. Electrochemical Measurements of Corrosion Process of Slag and Cement Mortar-lined Ductile Cast Iron Pipe for Water Supply[J]. 腐蚀科学与防护技术, 2017, 29(2): 110-116.
No Suggested Reading articles found!