Please wait a minute...
腐蚀科学与防护技术  2014, Vol. 26 Issue (6): 545-549    DOI: 10.11903/1002.6495.2013.361
  本期目录 | 过刊浏览 |
模拟滨海环境免涂装耐候钢锈层研究及其耐腐蚀机制
李立彦,周成(),尹雨群,王军,马奔,徐国进
北京科技大学材料科学与工程学院 北京 100083
Rust Scale Structure and Anti-corrosion Mechanism of Unpainted Weathering Steel in Coastal Area Environment
Liyan LI,Cheng ZHOU(),Yuqun YIN,Jun WANG,Ben MA,Guojin XU
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(816 KB)   HTML
摘要: 

通过模拟滨海环境的周期浸润加速腐蚀实验,对一种含Ni耐候钢和一种普通低合金钢Q420进行腐蚀失厚研究;利用扫描电镜、拉曼光谱等手段研究其锈层的形貌、结构和物相。结果表明:Ni对锈层结构有重要影响,可促使耐候钢锈层产生分层现象,内锈层连续致密,具有保护性;拉曼光谱分析表明α-FeOOH是耐候钢锈层的主要组成相,其细小团簇状堆积结构决定了锈层的致密性,能有效阻挡Cl-等阴离子的浸入;耐候钢锈层先局部深入后向两侧展开的生长方式,决定了锈层的连续性和与基体结合的牢固性,避免了耐候钢在滨海高盐分环境下锈层剥落的现象。而普通低合金钢Q420的锈层由颗粒粗大的γ-Fe2O3和Fe3O4组成,疏松多孔,耐腐蚀性差;锈层与基体界面较为平坦,与基体结合不牢,易剥落。

关键词 耐候钢低合金钢滨海环境大气腐蚀锈层结构    
Abstract

The corrosion thickness loss of a Ni-containing weathering steel and a common low-alloy steel Q420 was comparatively studied, by means of a dry-wet cyclic immersion test, which aims to simulate the atmospheric environment at coastal area. SEM and Raman spectroscopy were used to characterize the morphology, microstructure and phase composition of the formed rust scales. The results show that Ni has an important impact on the structure of weathering steel rust scale; the rust scale on weathering steel exhibits layered structure with an inner layer consisted mainly of α-FeOOH, which seems to be stacked with small clusters resulting in a compact layer with good continuity and protectiveness. Besides the formed rust scale is strongly adhesive to the steel substrate so that to ensure the integrity of the rust scale during exposure in coastal environment with high salt content. In the contrast, the rust oxide scale on Q420 steel is so loose and porous with large sized grains of γ-Fe2O3 and Fe3O4 hence its corrosion resistance is very poor. Furthermore, a relatively flat interface may not be favorable to the adhesion between the rust layer and Q420 steel substrate.

Key wordsweathering steel    low-alloy steel    coastal environment    atmospheric corrosion    rust layer structure
    
作者简介: 李立彦,女,1988年生,硕士生,研究方向为耐候钢的耐腐蚀性

引用本文:

李立彦,周成,尹雨群,王军,马奔,徐国进. 模拟滨海环境免涂装耐候钢锈层研究及其耐腐蚀机制[J]. 腐蚀科学与防护技术, 2014, 26(6): 545-549.
Liyan LI, Cheng ZHOU, Yuqun YIN, Jun WANG, Ben MA, Guojin XU. Rust Scale Structure and Anti-corrosion Mechanism of Unpainted Weathering Steel in Coastal Area Environment. Corrosion Science and Protetion Technology, 2014, 26(6): 545-549.

链接本文:

https://www.cspt.org.cn/CN/10.11903/1002.6495.2013.361      或      https://www.cspt.org.cn/CN/Y2014/V26/I6/545

图1  实验钢平均腐蚀失厚和腐蚀速率随时间变化曲线
图2  实验钢腐蚀600 h后锈层表面微观形貌图
图3  不同腐蚀周期实验钢锈层截面微观形貌图
图4  实验钢锈层的拉曼光谱分析
[1] 于千. 耐候钢发展现状及展望[J]. 钢铁研究学报, 2007, 19(11): 1
[2] 王建军, 陈家光. 海洋大气暴露3年的碳钢与耐候钢表面锈层分析[J]. 腐蚀与防护, 2002, 23(7): 288
[3] 松岛岩. 低合金钢耐蚀钢-开发, 发展及研究[M]. 北京: 冶金工业出版社, 2004
[4] Yamashita M, Miyuki H, Matsuda Y, et al. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century[J]. Corros. Sci., 1994, 36(2): 283
[5] Nakayama T, Yuse F. Development of atmospheric corrosion-resistant steel plates for unpainted or painted use in chloride environments[J]. Kobe Steel Eng. Rep., 2001, 51(1): 29
[6] Nakayama T, Ishikawa T. New approach for improving corrosion resistance of steel by artificially synthesized rust[J]. Kobe Steel Eng. Rep., 2009, 59(1): 13
[1] 徐松,谢亿,王军,李登科,李文波,吴堂清. 乡村大气环境中室外端子箱内铜导线腐蚀失效分析[J]. 腐蚀科学与防护技术, 2019, 31(6): 659-664.
[2] 夏大海,宋扬,宋诗哲,许立坤. 316L不锈钢大气腐蚀的电化学噪声检测:理论模型与应用[J]. 腐蚀科学与防护技术, 2019, 31(6): 557-564.
[3] 闫松涛,金莹,许斐范,文磊. 大气沉积颗粒物对低碳钢初期腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2019, 31(5): 467-474.
[4] 杜明,朱世东,张骁勇,李金灵,宋少华. 含Cr低合金钢的CO2腐蚀产物膜形成及机理研究进展[J]. 腐蚀科学与防护技术, 2019, 31(3): 335-342.
[5] 刘栓,周开河,吴跃斌,方云辉,蔡辉,李鹏,管金胜,李少华,段福平,李延伟,胡家元,卢光明,蒲吉斌,王立平. 石墨烯改性重防腐涂料在世界最高输电铁塔的防腐应用[J]. 腐蚀科学与防护技术, 2019, 31(1): 114-120.
[6] 陈文娟,陈翌庆,潘刚. O3/Cl-复合大气环境中Q235B钢的腐蚀演化特性[J]. 腐蚀科学与防护技术, 2019, 31(1): 8-18.
[7] 汪笑鹤, 汪明球, 李博文, 台闯. 大气环境腐蚀检测技术在铝合金大气腐蚀研究中的应用[J]. 腐蚀科学与防护技术, 2018, 30(6): 671-675.
[8] 孙海静, 刘莉, 李瑛. 模拟深海环境下低合金钢的阴极保护准则研究[J]. 腐蚀科学与防护技术, 2018, 30(2): 135-142.
[9] 陈新彦, 陈大明, 陈旭, 许琨, 陈永. 热带海洋大气环境中耐候钢腐蚀特征与机理的研究[J]. 腐蚀科学与防护技术, 2018, 30(2): 150-156.
[10] 林德源. 大气环境条件下电力金属材料的电偶腐蚀研究[J]. 腐蚀科学与防护技术, 2018, 30(2): 113-118.
[11] 潘刚, 陈文娟, 王瑛, 王飞鸿, 姚海宁. 高湿热海岸大气环境中Q235B钢的腐蚀演化规律[J]. 腐蚀科学与防护技术, 2018, 30(1): 55-60.
[12] 夏大海, 宋诗哲, 李健, 金威贤. 新型腐蚀电化学传感器在金属材料大气腐蚀现场检测中的应用[J]. 腐蚀科学与防护技术, 2017, 29(5): 581-585.
[13] 潘雪新, 姜海昌, 付鸿, 黄耀, 韩军科, 曾令会, 张德龙. 区域性气候条件下低合金高强耐候钢的初期腐蚀行为研究[J]. 腐蚀科学与防护技术, 2017, 29(4): 356-362.
[14] 林德源,戴念维,陈云翔,倪清钊,张鑫,张俊喜. 模拟海洋大气条件下直流电场作用对碳钢初期腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2017, 29(1): 63-67.
[15] 刘静,黄青丹,张亚茹,郝龙,穆鑫,董俊华,柯伟. 输电杆塔用热浸镀锌的大气腐蚀及影响因素[J]. 腐蚀科学与防护技术, 2016, 28(6): 570-576.