Please wait a minute...
腐蚀科学与防护技术  2014, Vol. 26 Issue (6): 537-540    DOI: 10.11903/1002.6495.2013.400
  本期目录 | 过刊浏览 |
铜铁试剂对Q235碳钢在3.5%NaCl溶液中的缓蚀作用
刘世念1,王成2(),苏伟1,吕旺燕1,朱圣龙2,付强1,王福会2
1. 广东电网公司电力科学研究院 广州 510080
2. 中国科学院金属研究所 沈阳 110016
Inhibition Effect of Cupferron on Q235 Carbon Steel in 3.5%NaCl Solution
Shinian LIU1,Cheng WANG2(),Wei SU1,Wangyan LV1,Shenglong ZHU2,Qiang FU1,Fuhui WANG2
1. Electric Power Research Institute of Guangdong Power Grid Corporation, Guangzhou 510080, China
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(1139 KB)   HTML
摘要: 

采用静态挂片和极化曲线测试技术研究了铜铁试剂对Q235碳钢在3.5%NaCl溶液中的缓蚀作用。结果表明,碳钢在3.5%NaCl溶液中腐蚀严重,主要为活性溶解,并且伴有明显的点腐蚀。铜铁试剂的加入促进了碳钢的阳极钝化,当铜铁试剂的含量为12.8 mmol/L时缓蚀效率达到90%以上,当铜铁试剂浓度增大为19.2和25.6 mmol/L时,缓蚀效率不变。铜铁试剂主要通过在Q235碳钢的表面吸附实现对Q235碳钢的缓蚀。

关键词 Q235钢缓蚀剂铜铁试剂电化学    
Abstract

The corrosion inhibition of Q235 carbon steel in 3.5%NaCl solution by cupferron was investigated by means of static immersion test and electrochemical experiments. The results indicated that Q235 steel suffered from serious corrosion with a characteristic of active corrosion, and obvious pits were observed after immersion. Cupferron promoted the passivation of Q235 steel in 3.5%NaCl solution, and the inhibition efficiency was approximately 90% when the concentration of cupferron was up to 12.8 mmol/L. The inhibition efficiency almost maintained constant when the concentration of cupferron increased up to 19.2 and 25.6 mmol/L. The inhibition effect of cupferron was mainly resulted from the adsorption on the steel surface.

Key wordsQ235 steel    inhibitor    cupferron    electrochemistry
    
作者简介: 刘世念,男,1972年生,高级工程师,研究方向为电力设备腐蚀与防护以及水处理技术

引用本文:

刘世念,王成,苏伟,吕旺燕,朱圣龙,付强,王福会. 铜铁试剂对Q235碳钢在3.5%NaCl溶液中的缓蚀作用[J]. 腐蚀科学与防护技术, 2014, 26(6): 537-540.
Shinian LIU, Cheng WANG, Wei SU, Wangyan LV, Shenglong ZHU, Qiang FU, Fuhui WANG. Inhibition Effect of Cupferron on Q235 Carbon Steel in 3.5%NaCl Solution. Corrosion Science and Protetion Technology, 2014, 26(6): 537-540.

链接本文:

https://www.cspt.org.cn/CN/10.11903/1002.6495.2013.400      或      https://www.cspt.org.cn/CN/Y2014/V26/I6/537

图1  Q235碳钢在3.5%NaCl溶液中的动电位极化曲线
图2  铜铁试剂对Q235碳钢在3.5%NaCl溶液中的缓蚀效率
图3  纯铜铁试剂和Q235碳钢腐蚀后表面产物的红外光谱图
图4  Q235碳钢在含不同浓度铜铁试剂的3.5%NaCl溶液中腐蚀120 h后的SEM像
[1] Javaherdashti R. How corrosion affects industry and life[J]. Anti-Corros. Method. M., 2000, 47(1): 30
[2] Zhang W G, Li L, Yao S W, et al. Corrosion protection properties of lacquer coatings on steel modified by carbon black nanoparticles in NaCl solution[J]. Corros. Sci., 2007, 49(2): 654
[3] Vera R, Rosales B M, Tapia C. Effect of the exposure angle in the corrosion rate of plain carbon steel in a marine atmosphere[J]. Corros. Sci., 2003, 45(2): 321
[4] Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corros. Sci., 2009, 51(5): 997
[5] Singh J K, Singh D D N. The nature of rusts and corrosion characteristics of low alloy and plain carbon steels in three kinds of concrete pore solution with salinity and different pH[J]. Corros. Sci., 2012, 56(3): 129
[6] 刘仁新. 试论涂料缓蚀剂[J]. 现代涂料与涂装, 2011, 14(2): 19
[7] Shu Q Q, Love P J, Bayman A, et al. Aluminum corrosion: Correlations of corrosion rate with surface coverage and tunneling spectra of organic inhibitors[J]. Appl. Surf. Sci., 1982, 13(3/4): 374
[8] Samuels B W, Sotoudeh K, Foley R T. Inhibition and acceleration of aluminum[J]. Corrosion, 1981, 37(2): 92
[9] 王佳, 曹楚南, 陈家坚等. 缓蚀剂阳极脱附现象的研究I: 缓蚀剂阳极脱附现象[J]. 中国腐蚀与防护学报, 1995, 15(4): 241
[10] 赵景茂, 陈国浩. 咪唑啉与硫脲在CO2腐蚀体系中的缓蚀协同作用机理[J]. 中国腐蚀与防护学报, 2013, 33(3): 226
[11] 周欣, 杨怀玉, 王福会. 3.5%NaCl饱和Ca(OH)2溶液中醇胺缩聚物对碳钢腐蚀的抑制[J]. 物理化学学报, 2011, 27(3): 647
[12] 杨武,顾濬祥,黎樵燊等. 金属的局部腐蚀点腐蚀缝隙腐蚀晶间腐蚀成分选择性腐蚀[M]. 北京: 化学工业出版社, 1995
[1] 夏大海,宋扬,宋诗哲,许立坤. 316L不锈钢大气腐蚀的电化学噪声检测:理论模型与应用[J]. 腐蚀科学与防护技术, 2019, 31(6): 557-564.
[2] 方露,何青青,胡吉明,张鉴清. 二维层状双金属氢氧化物 (LDHs) 在金属腐蚀防护中应用的研究进展[J]. 腐蚀科学与防护技术, 2019, 31(6): 665-671.
[3] 蔡家斌,肖齐洪,杨绿. 石墨烯对无铬达克罗涂层耐蚀性能影响[J]. 腐蚀科学与防护技术, 2019, 31(6): 565-575.
[4] 颜晨曦,王胜荣,张天翼,杨建炜,曹建平. 海洋大气环境下玻璃鳞片/环氧复合涂层制备及其耐蚀性评价[J]. 腐蚀科学与防护技术, 2019, 31(6): 597-602.
[5] 庞震,孙炜,汤小波,唐聿明,赵旭辉,左禹,刘斌,杨磊,杨锐. 碳钢/有机涂层在模拟大气环境中的失效研究与寿命预测[J]. 腐蚀科学与防护技术, 2019, 31(6): 637-642.
[6] 艾俊哲,王欢,段立东. 噻唑衍生物的缓蚀润滑性能及其在N80钢表面的吸附行为[J]. 腐蚀科学与防护技术, 2019, 31(5): 501-507.
[7] 郭建章,胡崇巍,张海兵. Bi含量对Al-Zn-Ga-Si-Bi合金电化学性能和腐蚀形貌影响[J]. 腐蚀科学与防护技术, 2019, 31(5): 489-494.
[8] 屈锋,孙浩然,雷智昊,石卫华,王功勋,胡松. 不同因素下钢筋混凝土电化学除氯效率研究[J]. 腐蚀科学与防护技术, 2019, 31(5): 515-520.
[9] 何先定,王晓光,徐伟. 飞机起落架AMS4340M钢在3.5%NaCl溶液中腐蚀电化学行为研究[J]. 腐蚀科学与防护技术, 2019, 31(5): 508-514.
[10] 刘灿帅,田朝晖,张志明,王俭秋,韩恩厚. 地质处置后期无氧阶段X65低碳钢腐蚀行为研究[J]. 腐蚀科学与防护技术, 2019, 31(4): 371-378.
[11] 孙立三,王春婷,卢光明,郑文茹,刘栓,蒲吉斌,王立平. 防腐抗冲蚀复合涂层制备及性能研究[J]. 腐蚀科学与防护技术, 2019, 31(4): 424-428.
[12] 严永博,邓洪达,肖雯雯,曹献龙,侯香龙. 超临界CO2输送管材防腐技术研究进展[J]. 腐蚀科学与防护技术, 2019, 31(4): 436-442.
[13] 刘红. 席夫碱缓蚀剂的研究进展[J]. 腐蚀科学与防护技术, 2019, 31(4): 449-454.
[14] 郑爱琴,宋新莉,曹宇,马玉喜,孙新军,梁小凯. 含铜低合金耐磨钢在盐雾环境中的腐蚀行为[J]. 腐蚀科学与防护技术, 2019, 31(3): 279-284.
[15] 陈莉君,毛玥,张娟,白青花,谢逍原,曾凡伟,陶祎. 供货态T91钢管内壁碳含量对海水腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2019, 31(3): 303-309.