Please wait a minute...
腐蚀科学与防护技术  2014, Vol. 26 Issue (6): 517-523    DOI: 10.11903/1002.6495.2013.406
  本期目录 | 过刊浏览 |
封隔器以下140钢级套管材质在完井过程中的腐蚀行为研究
王温栋1,谢俊峰2,吕祥鸿1(),赵国仙1,薛艳3,孙蕊1,李娜4
1. 西安石油大学材料科学与工程学院 西安 710065
2. 塔里木油田分公司油气工程研究院 库尔勒 841000
3. 西安摩尔石油工程实验室有限公司 西安 710065
4. 中船重工705研究所海源测控技术有限公司 西安 710065
Corrosion Behavior of 140 Grade Steel Casing Below Packer During Well Completion Process
Wendong WANG1,Junfeng XIE2,Xianghong LV1(),Guoxian ZHAO1,Yan XUE3,Rui SUN1,Na LI4
1. School of Material Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
2. Petroleum Engineering Institute, Petrochina Tarim Oilfield Company, Kuerle 841000, China
3. Xi'an Maurer Petroleum Engineering Laboratory, Co, Ltd., Xi'an 710065, China
4. 705th Research Institute Haiyuan Measure and Control Technology Co., Ltd of China Shipbuilding Industry Corporation, Xi'an 710065, China
全文: PDF(6090 KB)   HTML
摘要: 

通过高温高压鲜酸 (10%HCl+1.5%HF+3%HAc+5.1%TG201缓蚀剂)、残酸、地层水CO2腐蚀实验及电化学分析,研究TP140钢在苛刻工况条件下的耐蚀性。结果表明:TP140钢在鲜酸、残酸和地层水CO2腐蚀实验条件下,其均匀腐蚀速率分别为3.7490,0.4361和0.5524 mm/a。残酸实验后,试样表面存在不完整Cu膜。未去除Cu膜的TP140钢试样的自腐蚀电位 (-658 mV) 高于去除Cu膜的TP140钢试样的 (-692 mV),腐蚀驱动力小,但其自腐蚀电流密度 (3.1141×10-5 A/cm2) 明显高于去除Cu膜的 (1.0926×10-5 A/cm2)。相比于TP140钢基体 (Fe),Cu为正电性金属,膜的覆盖不致密形成典型的大阴极-小阳极结构,导致严重的局部腐蚀。TP140钢在鲜酸、残酸和地层水CO2腐蚀实验条件下,试样表面最大点蚀深度可达150 μm。

关键词 TP140钢鲜酸残酸CO2腐蚀    
Abstract

The corrosion behavior of TP140 steel was investigated based on the corrosion tests in such severe conditions as the live acid solution (15%HCl+1.5%HF+3%HAc+5.1% inhibitor), spent acid and formation water containing CO2 corrosion with high pressure and high temperature. Also the electrochemical analysis was used to evaluate the corrosion resistance of TP140 in these environments. The results show that the uniform corrosion rate of TP140 in live acid solution, spent acid and formation water containing CO2 environment is 3.7490, 0.4361 and 0.5524 mm/a respectively. After spent acid corrosion, an incomplete Cu film is formed on the surface of the sample. The corrosion potential (-658 mV) of TP140 sample without removing the Cu film is higher than that (-692 mV) of the sample with removed Cu film, which results in the corrosion driving force of the former is weaker than that of the latter. However, the self corrosion current density (3.1141×10-5 A/cm2) of the sample without removing the Cu film is significantly higher than that (1.0926×10-5 A/cm2) of the specimen with removed Cu film. Compared with the TP140 matrix of Fe, Cu is electropositive metal. So a typical large cathode-small anode structure because of incomplete Cu film is formed, which leads to serious local corrosion. The maximum depth of the corrosion pittings in these tests is up to 150 μm.

Key wordsTP140 steel    live acid    spent acid    CO2 corrosion
    
基金资助:国家自然科学基金项目 (51074126)和陕西省重点学科项目 (YS30230203) 资助
作者简介: 王温栋,男,1989年生,硕士生,研究方向为腐蚀与防护

引用本文:

王温栋,谢俊峰,吕祥鸿,赵国仙,薛艳,孙蕊,李娜. 封隔器以下140钢级套管材质在完井过程中的腐蚀行为研究[J]. 腐蚀科学与防护技术, 2014, 26(6): 517-523.
Wendong WANG, Junfeng XIE, Xianghong LV, Guoxian ZHAO, Yan XUE, Rui SUN, Na LI. Corrosion Behavior of 140 Grade Steel Casing Below Packer During Well Completion Process. Corrosion Science and Protetion Technology, 2014, 26(6): 517-523.

链接本文:

https://www.cspt.org.cn/CN/10.11903/1002.6495.2013.406      或      https://www.cspt.org.cn/CN/Y2014/V26/I6/517

Working condition Sample No. Surface area / mm2 Before test mass / g After test mass / g Mass loss / g Corrosion rate / mma-1 Uniform corrosion rate / mma-1
Fresh acid 1 1381.79 11.5220 11.4937 0.0283 3.8336 3.7490
2 1351.11 11.6282 11.6002 0.0280 3.7727
3 1350.17 11.5959 11.5689 0.0270 3.6408
Residual 4 1387.60 11.5987 11.5429 0.0558 0.3148 0.4361
acid 5 1387.34 11.5805 11.4975 0.0830 0.6208
6 1381.79 11.5210 11.4975 0.0607 0.3728
Formation water 7 1384.98 11.5566 11.3564 0.2002 0.6455 0.5524
CO2 corrosion 8 1377.00 11.4622 11.3015 0.1607 0.4594
表1  TP140钢在不同腐蚀条件下的均匀腐蚀速率计算结果
图1  TP140试样表面的宏观腐蚀形貌 (去膜前)
图2  去除缓蚀剂吸附膜后TP140试样表面的体式显微及背散射显微分析
图3  TP140钢残酸腐蚀实验后表面金属元素高分辨XPS谱拟合结果
图4  地层水CO2腐蚀实验后TP140试样表面微观腐蚀形貌
图5  地层水CO2腐蚀实验后TP140钢表面XRD分析结果
图6  不同腐蚀条件下TP140钢去膜后的宏观形貌
图7  不同腐蚀条件下去膜后TP140钢的微观形貌
图8  TP140钢在鲜酸、残酸、工况CO2环境中的最大点蚀深度及最大点蚀速率对比分析
图9  未去除Cu膜和去除Cu膜后TP140钢的电化学测试试样表面微观形貌
图10  未去除Cu膜和去除Cu膜后TP140钢的自腐蚀电位及极化曲线的测试结果
图11  未去除Cu膜的TP140试样在自腐蚀电位下的EIS图谱拟合结果和等效电路
[1] SY/T 5405-1996, 酸化用缓蚀剂性能试验方法及评价指标[S]
[2] NACE RP0775-2005, Preparation, Installation, Analysis, and Interpretation of Corrosion Coupons in Oilfield Operations[S]
[3] Boles J, Ke M J, Parker C. Corrosion inhibition of new 15 chromium tubulars in acid stimulation fluids at high temperatures [A]. The 2009 SPE Annual Technical Conference and Exhibition [C]. Louisiana, 2009
[4] Bayol E, Gürten T, Ali G A, et al. Interactions of some Schiff base compounds with mild steel surface in hydrochloric acid solution[J].Mater. Chem. Phy., 2008, 112(2): 624
[5] Ke M J, Boles J. Corrosion behavior of various 13 chromium tubulars in acid stimulation fluids [A]. The 1st International Symposium on Oilfield Corrosion [C]. Scotland, 2004
[6] Nasr-El-Din H A, Khuraidah A, Kritzler T, et al. Recent developments in high-temperature acidizing with super 13Cr completions laboratory testing [A]. The 2002 SPE Annual Technical Conference and Exhibition [C]. Louisiana, 2002
[7] 宋诗哲. 腐蚀电化学研究方法[M]. 北京: 化学工业出版社, 1988
[8] 曹楚南,张鉴清. 电化学阻抗谱导论[M]. 北京: 科学出版社, 2002
[9] 赵雪会, 白真权, 尹成先等. 镍基合金在含H2S/CO2环境下的电化学腐蚀行为研究[J]. 腐蚀科学与防护技术, 2009, 21(6): 526
[1] 赵国仙,祝恒倩. 镍基合金718在H2S/CO2环境中的腐蚀行为研究[J]. 腐蚀科学与防护技术, 2019, 31(3): 291-296.
[2] 张瑞, 阮臣良, 尹慧博, 李大朋, 廖洪千, 路民旭. H2S/CO2环境中Cl-浓度对镍基合金718耐腐蚀性能的影响[J]. 腐蚀科学与防护技术, 2018, 30(3): 285-290.
[3] 薛娟琴,张耀,唐长斌,于丽花,尹成先. 模拟地层水中TP140钢的缝隙腐蚀行为研究[J]. 腐蚀科学与防护技术, 2017, 29(1): 34-40.
[4] 赵景茂,李玉龙,谷丰,杨阳,于勇. H2S/CO2腐蚀环境中原油对缓蚀剂缓蚀性能的影响[J]. 腐蚀科学与防护技术, 2016, 28(5): 423-428.
[5] 吴亚楠,张帆,刘宏伟,刘宏芳. 月桂酸和硫脲在饱和CO2和SRB共存污水中缓蚀行为的研究[J]. 腐蚀科学与防护技术, 2015, 27(3): 219-225.
[6] 王世杰. 原油含水率对油气管材超临界CO2腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2015, 27(1): 73-77.
[7] 朱世东,李金灵,马海霞,尹志福,王维波. 超级13Cr不锈钢腐蚀行为研究进展[J]. 腐蚀科学与防护技术, 2014, 26(2): 183-186.
[8] 裘智超, 赵志宏, 叶正荣, 刘翔, 赵春, 熊春明. BG90SS钢在湿气和溶液介质中的H2S/CO2腐蚀行为[J]. 腐蚀科学与防护技术, 2013, 25(4): 297-302.
[9] 赵景茂,王帅东,李俊. 双子表面活性剂与硫脲在CO2饱和盐水中对碳钢的缓蚀协同效应[J]. 腐蚀科学与防护技术, 2013, 25(3): 189-194.
[10] 赵景茂, 魏辉荣, 张娇娇, 熊金平, 唐聿明, 左禹. L360钢在H2S/CO2环境中腐蚀的预测[J]. 腐蚀科学与防护技术, 2012, 24(2): 163-166.
[11] 胡丽华, 俞曼丽, 常炜, 张雷, 许立宁, 路民旭. Cr含量对低合金管线钢CO2腐蚀性能的影响[J]. 腐蚀科学与防护技术, 2011, 23(3): 256-260.
[12] 祝英剑, 刘长宇, 王峰, 黄天杰. 油管钢在饱和CO2模拟油田液中的腐蚀行为研究[J]. 腐蚀科学与防护技术, 2011, 23(3): 271-273.
[13] 任强,李春福,荣金仿,崔世华, 李雅杰. Ni-Co-Cr-Mo合金MP35N的抗CO2腐蚀性能研究[J]. 腐蚀科学与防护技术, 2010, 22(5): 403-406.
[14] 杨立红;李建平;石在虹;陈长风. 两种油管材料在模拟油田水溶液中的CO2腐蚀行为[J]. 腐蚀科学与防护技术, 2010, 22(2): 131-135.
[15] 李晓伟;高延敏. CO2腐蚀的研究现状及其控制措施[J]. 腐蚀科学与防护技术, 2009, 21(6): 553-555.