Please wait a minute...
腐蚀科学与防护技术  2014, Vol. 26 Issue (6): 505-510    DOI: 10.11903/1002.6495.2013.391
  本期目录 | 过刊浏览 |
粗糙度在316L不锈钢小孔初期生长过程中的作用
唐聿明,林冰,赵旭辉,左禹()
北京化工大学材料科学与工程学院 材料电化学过程与技术北京市重点实验室 北京 100029
Effect of Surface Roughness on Early Stage of Pitting Corrosion of 316LSS
Yuming TANG,Bing LIN,Xuhui ZHAO,Yu ZUO()
Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Faculty of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
全文: PDF(1880 KB)   HTML
摘要: 

通过分析不同粗糙度下的316L不锈钢在0.01 mol/L NaCl溶液中小孔腐蚀早期的电流波动,研究了粗糙度与不锈钢亚稳态孔蚀电位Em和稳定孔蚀电位Eb之间的关系,以及粗糙度 (Ra) 对亚稳态小孔生长机制的影响。结果表明,EmEb均随Ra的对数的增大而线性下降;Ra增大,亚稳孔的平均形核率和平均寿命增大,生长速率变化不大,但是同样的生长速率下粗糙表面的亚稳孔具有更强的可持续生长能力,加之高的形核频率导致强的腐蚀累积效应促进了亚稳态小孔向稳定孔的转变。

关键词 316L不锈钢亚稳态孔蚀粗糙度孔蚀电位    
Abstract

The influence of the surface roughness (Ra) on the metastable pitting potential (Em) and the stable pitting potential (Eb) as well as on the growth mechanism of metastable pittings was studied by analyzing the current fluctuations at the early stages of pitting corrosion for 316L stainless steel with three level of surface roughness. The results show that as lgRa increases both Em and Eb values decrease linearly. With the increase in surface roughness, the average nucleation rate and lifetime of metastable pits decrease while its growth rate shows little change. But by the same growth rate the metastable pits on the steel with larger surface roughness has bigger sustained growth ability, which in combination with the accumulated corrosion damage resulted from high nucleation rate may be beneficial to the transformation of metastable pits into stable pits.

Key words316LSS    metastable pitting    surface roughness    pitting potential
    
基金资助:国家自然科学基金项目 (51171014,52110001) 和中央高校基本科研业务费专项资金 (ZZ1116) 资助
作者简介: 唐聿明,1971年生,女,博士,研究方向为材料的腐蚀与防护

引用本文:

唐聿明,林冰,赵旭辉,左禹. 粗糙度在316L不锈钢小孔初期生长过程中的作用[J]. 腐蚀科学与防护技术, 2014, 26(6): 505-510.
Yuming TANG, Bing LIN, Xuhui ZHAO, Yu ZUO. Effect of Surface Roughness on Early Stage of Pitting Corrosion of 316LSS. Corrosion Science and Protetion Technology, 2014, 26(6): 505-510.

链接本文:

https://www.cspt.org.cn/CN/10.11903/1002.6495.2013.391      或      https://www.cspt.org.cn/CN/Y2014/V26/I6/505

图1  316L不锈钢在0.01 mol/L NaCl溶液中的慢速动电位极化曲线及Em与Eb的确定
图2  3种砂纸打磨后试样表面的AFM像
图3  不同Ra下316L不锈钢Em和Eb与lgRa的直线关系
图4  不同电位区间内不同Ra下316L不锈钢的亚稳态孔的平均形核数目
图5  不同电位区间内不同Ra下316L不锈钢的亚稳态孔的平均生长速率
图6  不同Ra下316L不锈钢亚稳态小孔不同生长速率下的电流波动累积概率
图7  不同Ra下316L不锈钢亚稳态孔平均寿命随电位的变化
图8  不同Ra下不锈钢表面峰值电流大于2 µA的亚稳态小孔所占比率与小孔生长速率的关系
图9  粗糙表面 (240#) 和光滑表面 (1000#) 上的小孔形貌
[1] Frankel G S, Stockert L, Hunkeler F. Metastable pitting of stainless steel[J]. Corrosion, 1987, 43(7): 429
[2] 左禹, 王海涛. 金属亚稳态孔蚀行为的电化学研究[J]. 腐蚀科学与防护技术, 1999, 11(1): 34
[3] Pourbaix M, Klimzack-Mathieiu L, Mertens C H. Potentiokinetic and corrosimetric investigations of the corrosion behaviour of alloy steels[J]. Corros. Sci., 1963, 3(4): 239
[4] 王海涛, 左禹, 熊金平. 表面粗糙度对316L不锈钢亚稳态孔蚀行为的影响[J]. 中国腐蚀与防护学报,2002, 22(3): 158
[5] Arash S, Walid K, Sasha O. The effect of surface roughness on the efficiency of the cyclic potentiodynamic passivation (CPP) method in the improvement of general and pitting corrosion resistance of 316VM stainless steel[J]. Mater. Lett., 2008, 62: 3906
[6] Coates G E. Effect of some surface treatments on corrosion of stainless steel[J]. Mater. Performance, 1990, 29(8): 61
[7] Sasaki K, Burstein G T. The generation of surface roughness during slurry erosion-corrosion and its effect on the pitting potential[J]. Corros. Sci., 1996, 38(12): 2111
[8] Hong T, Nagumo M. Effect of surface roughness on early stages of pitting corrosion of type 301 stainless steel[J]. Corros. Sci., 1997, 39(9): 1665
[9] Burstein G T, Pistorius P C. Surface roughness and the metastable pitting of stainless steel in chloride solutions[J]. Corrosion, 1995, 51(5): 380
[10] Suter T, Müller Y, Schmutz P. Microelectrochemical studies of pit initiation on high purity and ultra high purity aluminum[J]. Adv. Eng. Mater., 2005, 7(5): 339
[11] Li W, Li D Y. Influence of surface morphology on corrosion and electronic behavior[J]. Acta Mater., 2006, 54: 445
[12] Walter R, Bobby K M. Influence of surface roughness on the corrosion behavior of magnesium alloy[J]. Mater. Des., 2011, 32: 2350
[13] Zuo Y, Wang H T, Xiong J P. The aspect raio of surface grooves and metastalbe pitting of stainless steel[J]. Corros. Sci., 2002, 44: 25
[14] 左禹, 符适. 表面粗糙度对非晶态合金亚稳态小孔形核和生长的影响[J]. 北京科技大学学报, 1996, 18(增刊): 11
[15] Malki B, Baroux B. Computer simulation of the corrosion pit growth[J]. Corros. Sci., 2005, 47: 171
[16] Roxanna B A, Holly J M, Horstemeyer M F, et al. Corrosion relationships as a function of time and surface roughness on a structural AE44 magnesium alloy[J]. Corros. Sci., 2010, 52: 1635
[17] Tang Y M, Zuo Y. The metastable pitting of mild steel in bicarbonate solutions[J]. Mater. Chem. Phys., 2004, 88: 221
[1] 金兰,刘峰,赵艳,崔勇. 外加电位对316L不锈钢在硼酸溶液中应力腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2019, 31(4): 405-410.
[2] 董海英, 胡丽娟, 梁婉怡, 谢耀平, 林保全. 稀土Ce对316L不锈钢耐腐蚀性能的影响[J]. 腐蚀科学与防护技术, 2018, 30(5): 489-495.
[3] 石慧英, 左禹. 钨酸根离子对304不锈钢亚稳态与稳态孔蚀形核与生长的影响[J]. 腐蚀科学与防护技术, 2018, 30(2): 167-171.
[4] 杨柳青,刘道新,谢朝阳,王正良,徐星辰,叶作彦. 氯化铁溶液中316L和HR-2不锈钢的腐蚀行为研究[J]. 腐蚀科学与防护技术, 2017, 29(2): 117-124.
[5] 郭建章,赵佳. 316L不锈钢化学镀及超声辅助化学镀镍磷镀层性能研究[J]. 腐蚀科学与防护技术, 2017, 29(2): 163-167.
[6] 张俊,黄嘉鹏,尚根峰,王忠华,汪航. 不同表面粗糙度镍铬铝合金的高温氧化行为[J]. 腐蚀科学与防护技术, 2016, 28(6): 531-536.
[7] 林冰,王怡珊,王佳妮,左禹,唐聿明. 碳钢在碱性溶液中的孔蚀电位与HCO3-/Cl-比值关系的研究[J]. 腐蚀科学与防护技术, 2016, 28(2): 135-138.
[8] 唐聿明,牛犇,林冰,赵旭辉,左禹. NO2-及其浓度对混凝土模拟孔隙液中碳钢早期孔蚀的作用[J]. 腐蚀科学与防护技术, 2015, 27(2): 123-128.
[9] 孙小燕,刘孝光,汪列隆,钱叶旺. 固溶处理对316L不锈钢晶间腐蚀性能的影响[J]. 腐蚀科学与防护技术, 2014, 26(3): 228-232.
[10] 刘凤,史永娟,任伊宾,杨柯. 柠檬酸钝化对316L不锈钢耐蚀性能的影响[J]. 腐蚀科学与防护技术, 2013, 25(1): 35-38.
[11] 李志革,樊灿灿,冯志远,刘斌. 镍铬合金烤瓷冠拆除件的腐蚀研究[J]. 腐蚀科学与防护技术, 2013, 25(1): 49-52.
[12] 郑传伟, 曹小明, 张劲松. 反应烧结碳化硅高温氧化过程的表面分析[J]. 腐蚀科学与防护技术, 2010, 22(6): 479-483.
[13] 刘继雄 刘浩 熊焰. 三种建筑用钢腐蚀试验除锈样的表面粗糙度分析[J]. 腐蚀科学与防护技术, 2009, 21(4): 417-419.
[14] 孙东杰; 陈磊; 王宏伟; 耿新; 古可成 . 机械加工表面粗糙度与电解充氢[J]. 腐蚀科学与防护技术, 2007, 19(1): 49-50 .
[15] 汪轩义; 吴荫顺; 张琳; 等 . 316L不锈钢钝化膜在Cl~-介质中的耐蚀机制[J]. 腐蚀科学与防护技术, 2000, 12(6): 311-314 .